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Are There More Than Five Linearly-Independent 
Collision Invariants for the Boltzmann Equation? 
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The problem of finding the summational collision invariants for the Boltzmann 
equation is tackled with the aim of proving that the most general solution of the 
problem is not different from the standard one even when the equation defining 
a collision invariant ~ is only satisfied almost everywhere in R 3 • R 3 • S 2. The 
collision invariant 0 is assumed to be in the Hilbert space Ho~ of the functions 
which are square integrable with respect to a Maxwellian weight. 
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1. i N T R O D U C T I O N  

One of the basic  ingredients  of the kinet ic  theory  of  a m o n a t o m i c  rarefied 
gas (1'2) is the concept  of  a ( summat iona l )  col l is ion invar iant ,  i.e., a funct ion 

0 ({ )  such that  

~,(%,)  + ~(%' )  - ~,(%,) - ~ ( { )  = o (1.1)  

where {, { ,  are vectors  in R 3 (with the physical  mean ing  of molecu la r  

velocit ies)  and  

~' = ~ - n(n" V)  

t t { ,  = { ,  + n ( n - V )  
(1.2) 

Here  V = { - { ,  is the relat ive veloci ty and  n is a unit  vector. Equa-  
t ion (1.1) mus t  be satisfied a lmos t  everywhere  in R 3 x  R3•  S 2. 

Equa t ion  (1.1) p lays  an i m p o r t a n t  role in several  p rob lems  of kinetic  
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theory; in particular, if f is the distribution function and ~ = log f, then 
Eq. (1.1) must be satisfied by all the possible equilibrium solutions. 

The first discussion of Eq. (1.1) was due to Boltzmann, (~'4) who 
assumed ~ to be differentiable twice and arrived at the result that the most 
general solution of Eq. (1.1) is given by 

~0(~) = A + B-  ~ + C I~12 (1.3) 

where A e R,  B e R 3, C e R are arbitrary constants. This result seems to be 
physically obvious because the solutions of Eq. (1.1) form a linear manifold 
and if more than five collision invariants existed, it would appear that {' 
and { ,  (the velocities which give rise to { and { ,  through an elastic 
impact) would depend on less parameters than the two scalar ones 
specified by n. This would, of course, be at variance with the fact that the 
centers of the colliding particles at the moment of the impact lie on a line 
which can have any direction in space. Yet, there are good reasons for 
trying to give a detailed proof of the fact that there are no other solutions 
in addition to those specified by Eq. (1.3); in fact, the hypothetical new 
solutions might be linearly independent but functionally dependent on the 
previous ones. Indeed, it is remarkable that Boltzmann was not satisfied 
with physical evidence and felt the necessity of giving the above-mentioned 
proof. 

After Boltzmann, the matter of finding the solutions of Eq. (1.1) was 
investigated by Gronwall (5'6) (who was the first to reduce the problem to 
Cauchy's functional equation for linear functions), Carleman, (7) and 
Grad. (8) All these authors assumed 0 to the continuous and proved that it 
must be of the form given in Eq. (1.3). Slightly different versions of 
Carleman's proof are given in refs. 2 and 9. In the latter monograph ~9) the 
authors prove that the solution is of the form (1.3), even if the function 
is assumed to be measurable rather than continuous. In fact, they use a 
result on the solutions of Cauchy's equation: 

f ( x + v ) = f ( x ) + f ( v )  (x, v e R " )  (1.4) 

valid for measurable functions. It seems, however, that when passing from 
continuous to (possibly) discontinuous functions, one should insist on the 
fact that Eq. (1.1) is satisfied almost everywhere and not everywhere in 
R 3 x R 3 x S 2, as assumed in ref. 9. The proof under consideration does not 
even mention the role played by zero-measure sets in R3x R3x S 2. This 
makes the proof rather uninteresting from the viewpoint taken here. It 
might be possible, although this will not be attempted in this paper, to 
transform the proof in ref. 9 into a proof that the collision invariants are 
the classical ones under the assumption that Eq. (1.1) holds almost 
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everywhere. This would require arguments from the theory of measurable 
functions which were not even mentioned in ref. 9. 

In this paper the problem of solving Eq. (1.1) is tackled with the aim 
of proving that Eq. (1.3) gives the most general solution of Eq. (1.1), when 
the latter is satisfied almost everywhere in R s x R 3 X S 2. I shall assume that 
0 is in the Hilbert space Ho~ of the functions which are square integrable 
with respect to a Maxwellian weight c0([ ~1 ) = (/~/~)3/2 exp( -/~ I~l 2),/~ > 0. 

After this paper was accepted for publication, it was brought to my 
attention that a completely different proof of the same result (under the 
assumption that 0 ~ Lloo) is contained in a paper by Arkeryd. (1~ 

2. THE  COLLIS ION I N V A R I A N T S  M U S T  BE P O L Y N O M I A L S  

Let 0 ~ H~ and define 

1 
f~ co(1~1.)[0(~.) + 0 ( ~ ' ) -  0(~.)]  dn d~. (2.1) 

xO = U~ ~• 

where dn is the measure induced by the Lebesgue measure on the unit 
sphere S a. Some properties of K are as follows. 

L e m m a  1. K is a bounded self-adjoint operator in Ho). 

Proof. Note that, if (., .) is the scalar product in Ho), then 

1 f ,  

(~, K~,) = (0, ~') -l-~n AR~• s= co(l{I) co(1~.1)(0; + 0 ' -  0 ,  - 0) 

x (~b, + q~'- q~, - ~b) dn d~,  d~ (2.2) 

where I simply write 0 , ,  0', and 0 ,  for 0(~,) ,  0(~'), and 0 (~ , )  and use 
the fact that r Equation(2.2) shows that 
(~b, K 0 ) =  (K~b, 0). In addition, 

- 3  l[0rl2 < (0, K0)~< rl~,ll 2 (2.3) 

where the lower bound (which is by no means the best possible one) 
follows from Eq. (2.1) directly and the upper bound from Eq. (2.2). | 

L e m m a  2. K transforms polynomials of the ruth degree into poly- 
nomials of degree not larger than rn. 

Proof. If 0 is a polynomial of the mth degree in {, 0 ,  + 0 ' -  •, is 
also a polynomial of the mth degree in {, with coefficients depending on n. 
After integration of these coefficients, the result is a polynomial in { of 
degree certainly not higher than rn. | 
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Lemma 3. ~ is a collision invariant if and only if 0 is an eigen- 
function of K corresponding to the unit eigenvalue. 

Proof. The "if" part follows from Eq. (2.2) by noting that if ~b = ~O 
and K0 = 0 (a.e. in {), then the last integral in Eq. (2.2) must vanish, which 
is possible only if 0 a.e. satisfies Eq. (1.1). The "only if" part is trivial. | 

I now prove the following basic result on the operator K: 

T h e o r e m  1. There is a complete set of eigenfunctions of K whose 
elements are polynomials in {. 

Proof. Let ~ be an eigenfunction of K corresponding to an eigen- 
value 2. Expand ~ into a series of polynomials in H~ (Hermite tensor poly- 
nomials or Sonine-Laguerre polynomials): 

0 = Y', amP,. (2.4) 
m 

where m is a triplet (ml, m2, m3) of nonnegative integers which identify the 
polynomials. The degree of Pm is denoted by Iml and (Pm, PI) = (~ml. Then 

2 amKPm=.~. 2 amP m (2.5) 
m r n  

and for any triplet j 

am(Pj, KP~)  = )o ~ a,.(Pj, P,.) = Zaj 
m m 

(2.6) 

Now, since, by Lemma 2, KP m is a polynomial of degree lml at most, and 
hence can be expressed as a linear combination of P,,, with Im'l ~< Iml, 
(Pj, KPm) vanishes if IJl > Iml. Since, however, (Pj, KPm)= (KPj, Pm), it 
vanishes if Ijl < [ml as well. It follows that the only terms surviving in 
Eq. (2.6) are those with ]Jl = Iml. This means that for each degree we have 
to solve a finite linear system [-having a symmetric matrix with elements 
(Pz, KPm)]. The order of this system is equal to the maximum number of 
mutually orthogonal polynomials of a given degree Ill = Iml and, accord- 
ingly, there are as many eigenvectors. We can then construct finite sums 
~f~.m a,,Pm with Lml fixed in order to get the eigenfunctions of K. The func- 
tions obtained in this way are a complete set (because for each degree their 
number equals the maximum number of mutually orthogonal polynomials 
of that degree). | 

I am now in the position of proving the basic result of this paper as 
a corollary. 
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Corol lary .  There is a polynomial basis for the subspace of the 
collision invariants. 

This follows from Lemma 3 and the previous theorem. I remark that 
even if the eigenvalue 2 =  1 of the operator K were infinitely times 
degenerate (which is not the case, because K turns out to be compact in 
Ho~), there would still be a polynomial basis for the collision invariants. II 

3. T H E  COLL IS ION I N V A R I A N T S  F O R M  A 
F I V E - D I M E N S I O N A L  S U B S P A C E  

It is clear that one can now proceed to using any of the classical 
proofs which assume 0 to be continuous or even differentiable, in order to 
show that Eq. (1.3) gives the most general collision invariant. 

The following proof (which is similar to Boltzmann's argument (3'4~) is 
based on an immediate consequence of the results of the previous section, 
i.e., the fact that we can look for polynomial solutions (1.1) and hence, 
afortiori, for a C 2 solution. I start from the remark ~2'5'7'9) that since the 
transformation (1.2) is the most general one leaving { + { ,  and I{J2+ I~,] 2 
invariant, one must have 

~({) + ~({ , )  = f ( x ,  u) (3.1) 

where 

x=~+~,;  u=�89 2) (3.2) 

If we differentiate Eq. (3.1) with respect to { and subtract from the result 
the analogous derivative with respect to { , ,  we obtain 

0~ a~, ({-{*) (3.3) 

where the �9 in ~({ , )  is omitted when it is differentiated with respect to its 
own argument. Equation (3.3) implies 

~-~-,, ( ~  - ~ ,~ )=  ~ (~,i- ~,,) (i, k = 1, 2, 3) (3.4) 

If we now differentiate with respect to ~j, we obtain 

< 
- ~ k 6,r + ~  (~ , -  ~,,) (3.4) 
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where 6~r denotes the Kronecke r  delta. A further differentiation with 
respect to ~ , j  gives 

~2 O (~kJ "[ ~20 ~2@ ~20 ~ir (3.5) 

If we let i, k, r take three different values (say i - -1 ,  k = 2 ,  r = 3 )  a n d j = k ,  
we obtain 

020 
- - = 0  ( i , r = l , 2 , 3 ; i C r )  (3.6) 

If we now take i = r, k = j, i #  k, we obtain 

(ivak) (3.7) 

Since the right-hand side cannot depend on {, we conclude that both sides 
are constant; this constant does not depend on the index, because we can 
change the values of i and k, while keeping i• k. From Eqs. (3.6) and (3.7) 
we thus conclude that 

= 2A6ir (i, r = 1, 2, 3; A = const) (3.8) 

Equation (3.8) immediately delivers Eq. (1.3). 
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